Home
Class 12
MATHS
The sum of the infinite series cot^(-1)(...

The sum of the infinite series `cot^(-1)(7/4)+cot^(-1)((19)/4) +cot^(-1)((39)/4)....oo`

Text Solution

Verified by Experts

Here, general term `T_r` can be wriiten as,
`T_r = cot^-1((4r^2+3)/(4)) = cot^-1(r^2+3/4)`
`=>T_r = tan^-1(1/(r^2+3/4)) = tan^-1(((r+1/2)-(r-1/2))/(1+r^2-1/4))`
`= tan^-1(((r+1/2)-(r-1/2))/(1+(r+1/2)(r-1/2)))`
We know, `tan^-1((x-y)/(1+xy)) = tan^-1x+tan^-1y`
`:. T_r = tan^-1(r+1/2) - tan^-1(r-1/2)` `:. T_1 = tan^-1 (3/2)-tan^-1 (1/2)`
`T_2 = tan^-1 (5/2)-tan^-1 (3/2)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

Cot^(-1)(4/3)-Cot^(-1)(15/8)=

The sum of the infinite terms of the series cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo is equal to a. tan^(-1)(1) b. tan^(-1)\ \ (2) c. tan^(-1)2\ d. (3pi)/4-tan^(-1)3

The sum of the infinite terms of the series cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo is equal to a. tan^(-1)(1) b. tan^(-1)\ \ (2) c. tan^(-1)2\ d. (3pi)/4-tan^(-1)3

Prove that cot^(-1)(3)-cot^(-1)(4)=cot^(-1)(13)

The sum of cot^(-1)(3/4)+cot^(-1)(7/4)+cot^(-1)(19/4)+ cot^(-1)(39/4)......oo