Home
Class 11
MATHS
lt(x rarr0)(e^(x)+log((1-x)/(e)))/(tan x...

lt_(x rarr0)(e^(x)+log((1-x)/(e)))/(tan x-x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(x)+log{(1-x)/(e)})/(tan x-x) equals

lim_(x rarr0)(e^(x)-log(ex+e))/(x)

lim_(x rarr0)(e^(x)-1)/(log(1+x))

The value of lim_(x rarr0)(e-(1+x)^((1)/(x)))/(tan x) is

lim_(x rarr0)(e^(x)-log_(e)(ex+e))/(x)

lim_(x rarr0)(sin log(1-x))/(x)

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(log(1-(x)/(2)))/(x)

lim_(x rarr0)((e^(x)-1)log(1+x))/(sin x)

lim_(x rarr0)(log_(e)(1+x))/(x)