Home
Class 12
MATHS
" If "f(f(x)=9" and "f(9)=4" ,the prove ...

" If "f(f(x)=9" and "f(9)=4" ,the prove that "lim_(x rarr9)(sqrt(f(x))-3)/(sqrt(3-3))=4

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr9)(3-sqrt(x))/(4-sqrt(2x-2))

lim_(x rarr0)(sqrt(x+4)-2)/(sqrt(x+9)-3)

If f(9)=9" and "f'(9)=4," then "underset(xto9)("lim")(sqrt(f(x))-3)/(sqrt(x)-3)=

If f(9)=9,f'(9)=4,then(lim)_(x rarr9)(sqrt(f(x))-3)/(sqrt(x)-3)=

If f(9) = 9, f'(9) = 4, then the value of lim_(xrarr9)(sqrt(f(x))-3)/(sqrt(x)-3) is

If f(9)=9 and f'(9)=1 then lim_(x rarr 9) (3-sqrt(f(x)))/(3-sqrtx)

lim_(x rarr4)(3x-8sqrt(x+4))/(5x-9sqrt(x)-2)

If f(9)=9 , f'(9)= 4 then lim _ (x rarr9) (sqrt f(x) -3)/(sqrt(x)-3) =_____.

If f(9) =9, f^(')(9) = 4 , then lim_(x rarr 9)(sqrt(f(x))-3)/(sqrtx - 3) =