Home
Class 12
MATHS
(4)quad y=(e^(x)-e^(-x))/(e^(x)+e^(-x))q...

(4)quad y=(e^(x)-e^(-x))/(e^(x)+e^(-x))quad I*(dy)/(dx)=1-y^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

if y=(e^(x))/(1+e^(x)) find (dy)/(dx)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

If y = (e^x - e^-x)/(e^x + e^-x) . Prove that dy/dx = 1 - y^2