Home
Class 11
MATHS
If any triangle A B C , that: (asin(B-C...

If any triangle `A B C` , that: `(asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If any triangle ABC, that: (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(csin(A-B))/(a^(2)-b^(2))

In any triangle ABC, prove that : (a sin(B-C))/(b^2-c^2)= (b sin (C-A))/(c^2-a^2)= (c sin (A-B))/(a^2-b^2) .

Show that in a triangle ABC, (asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)

In any triangle A B C , prove that: ("sin"(B-C))/("sin"(B+C))=(b^2-c^2)/(a^2)

In a DeltaABC (bsin(C-A))/(c^(2)-a^(2))+(csin(A-B))/(a^(2)-b^(2))=

In a DeltaABC (bsin(C-A))/(c^(2)-a^(2))+(csin(A-B))/(a^(2)-b^(2))=

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle A B C , prove that: \ asin(B-C)+b sin(C-A)+csin(A-B)=0

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))