Home
Class 11
MATHS
Prove that (" sin " 3x - " sin " x)/(" ...

Prove that `(" sin " 3x - " sin " x)/(" cos " 2x)=2sinx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin 3x - sin x) /( cos x - cos 3x) = cot 2x

Prove that (sin 3x - sin x) /( cos x - cos 3x) = cot 2x

Prove that ( " cos " 4x + " cos " 3x + " cos " 2x)/(" sin " 4x + " sin " 3x + " sin " 2x) = " cot 3x

Prove that (sin x-sin 3 x)/(sin ^(2) x-cos ^(2) x)=2 sin x

Prove that (sin 4x + sin 2x)/(cos 4x + cos 2x) = tan 3x .

Prove that (sinx - sin3x)/(cos^2x - sin^2x) = -2sinx

(sin x - sin 3x)/(sin^(2)x-cos^(2)x)=2sinx

(sin x - sin 3x)/(sin^(2)x-cos^(2)x)=2sinx

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x

Prove that : (sin x + sin 3x)/(cos x + cos 3x) = tan 2x