Home
Class 6
MATHS
Regular tetrahedron a tetrahedron whose ...

Regular tetrahedron a tetrahedron whose all the edges are of equal length is called a regular tetrahedron.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron).Show that the angle between any edge and a face not containing the edge is cos^(-1)(1/sqrt(3))

Comprehesion-I Let k be the length of any edge of a regular tetrahedron (all edges are equal in length). The angle between a line and a plane is equal to the complement of the angle between the line and the normal to the plane whereas the angle between two plane is equal to the angle between the normals. Let O be the origin and A,B and C vertices with position vectors veca,vecb and vecc respectively of the regular tetrahedron. The angle between any edge and a face not containing the edge is

Comprehesion-I Let k be the length of any edge of a regular tetrahedron (all edges are equal in length). The angle between a line and a plane is equal to the complement of the angle between the line and the normal to the plane whereas the angle between two plane is equal to the angle between the normals. Let O be the origin and A,B and C vertices with position vectors veca,vecb and vecc respectively of the regular tetrahedron. The angle between any two faces is

Comprehesion-I Let k be the length of any edge of a regular tetrahedron (all edges are equal in length). The angle between a line and a plane is equal to the complement of the angle between the line and the normal to the plane whereas the angle between two plane is equal to the angle between the normals. Let O be the origin and A,B and C vertices with position vectors veca,vecb and vecc respectively of the regular tetrahedron. The value of [vecavecbvecc]^(2) is

A tetrahedron is a pyramid whose base is a triangle (b) square (c) rectangle (d) quadrilateral

ABCD is a regular tetrahedron.M and N are the mid points of the edges AB and CD It the length of AB is a,then |bar(MN)|^(2)=

A person throws two dice, one the common cube and the other a regular tetrahedron, the number on the lowest face being taken in the case of the tetrahedron, then find the probability that the sum of the numberd appearing on the dice is 6.

Find the ratio of the volume of tetrahedron with that of the tetrahedron formed by the centroids of its faces. Given Volume of tetrahedron =1/3 times area of base triangle times height of vertex.