Home
Class 12
MATHS
Find the inverse the matrix (if it exist...

Find the inverse the matrix (if it exists)given in`[(1, 0, 0),( 0,cosalpha ,sinalpha),(0, sinalpha, -cosalpha)]`

Text Solution

AI Generated Solution

To find the inverse of the given matrix \( A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of the Matrix To find the inverse, we first need to check if the determinant of the matrix \( A \) is non-zero. \[ \text{det}(A) = 1 \cdot \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{vmatrix} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse of each of the matrices (if it exists) given in [{:(1,0,0),(0,cosalpha,sinalpha),(0,sinalpha,-cosalpha):}]

Find the inverse the matrix (if it exists) given in [[2,1,34,-1,0-7,2,1]]

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

A = [ [ 1 , 0 , 0 ] , [ 0 , cosalpha , sinalpha ] , [ 0 , sinalpha , - cosalpha ] ] , find |A|

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is