Home
Class 10
MATHS
[(x+a)],[(x^(2)-3x+3)^(2)-(x-1)(x-2)=7],...

[(x+a)],[(x^(2)-3x+3)^(2)-(x-1)(x-2)=7],[7x^(2)-(x-2)(x-3)=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

3(x+2)-2(x-1)=7

(7x^(3)+3x^(2)-x+1)/(x+1)=(ax^(2)+bx+c)-(2)/(x+1)

Let the root of equation (3x^(3)-x^(2)+x-1)/(3x^(3)-x^(2)-x+1)=(4x^(3)+7x^(2)+x+1)/(4x^(3)+7x^(2)-x-1) be x_(1),x_(2),x_(3) then the value of x_(1)+x_(2)+x_(3) is

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

(x+1)(x+2)(x+6)=x^(3)+9x^(2)+4(7x-1)

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

((2)/(3)x+4)((3)/(2)x+6)-((1)/(7)x-1)((1)/(7)x+1)

lim_(x rarr1)(x^(2)-7x+12)/(x^(2)+4-3x-4)