Home
Class 12
MATHS
y=tan^(-1)(x/(1+sqrt(1-x^2)))...

`y=tan^(-1)(x/(1+sqrt(1-x^2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentaite w.r.t x , y = tan^(-1) (x /(sqrt(1+x^(2))-1))

Differentiate w.r.t x , y = tan^(-1) (x /(sqrt(1+x^(2))-1))

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

Let y_1=tan^(-1)((sqrt(1+x^2)-1)/x) and y_2=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) then (dy_1)/(dy_2)=

y=tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))), where -1