Home
Class 12
MATHS
" 14) "" öl "f(1)=1,f'(1)=2," so "lim(x ...

" 14) "" öl "f(1)=1,f'(1)=2," so "lim_(x rarr1)(sqrt(f(x))-1)/(sqrt(x)-1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 1)(1-sqrt(x))/(1 + sqrt(x))

lim_(x rarr1)(x-1)/(sqrt(x)-1)=

lim_(x rarr1)(4-sqrt(15x+1))/(2-sqrt(3x+1))

If f(1) =1 and f^(')(1) =2 then lim_(x rarr 1) (sqrt(f(x))-1)/(sqrt(x) -1) =

lim_(x rarr1)(sqrt(1+x)+sqrt(1-x))/(1+x)

lim_(x rarr1)(sqrt(1+x)+sqrt(1-x))/(1+x)

If f(1)=1,f'(1)=2 then lim_(x rarr1)(sqrt(f(x)-1))/(sqrt(x)-1) is equal to

lim_(x rarr1)((x-1)/(sqrt(x^(2)-1)+sqrt(x-1)))=

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

If f(1) = 1, f'(1) = 2 then lim_(x to 1 ) (sqrt(f(x))-1)/(sqrt(x)-1) is equal to -