Home
Class 10
MATHS
sin theta!==cos theta," find the ralue o...

sin theta!==cos theta," find the ralue of "2tan^(2)theta+sin^(2)theta-1

Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is an acute angle and sin theta=cos theta, find the value of 2tan^(2)theta+sin^(2)theta-1

If sin theta = cos theta ,then the value of 2 tan^(2) theta + sin^(2) theta -1 is equal to

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

If sin theta=cos theta , then 2tan^(2)theta+sin^(2)theta-1= _____

If 3cos theta=1, find the value of (6sin^(2)theta+tan^(2)theta)/(4cos theta)

If sin theta=(12)/(13), find the value of (sin^(2)theta-cos^(2)theta)/(2sin theta cos theta)xx(1)/(tan^(2)theta)

If sin theta = 12/13 (0^(@) lt theta lt 90^(@)) , find the value of (sin^(2) theta - cos^(2)theta)/(2 sin theta cos theta) xx (1)/(tan^(2)theta) .

If (2 sin theta )/(1+ cos theta + sin theta )=x, find the value of (1- cos theta + sin theta )/(1+ sin theta )

If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the value of (tan^(2) theta + 1)/(tan^(2) theta - 1) is

Taking theta=30^(@) , verify each of the following (i) sin 2theta=2sin theta cos theta (ii) cos theta=2cos^(2)theta-1=1-2sin^(2)theta (iii) tan2theta=(2tantheta)/(1-tan^(2)theta)