Home
Class 10
MATHS
[f(u)=u^(2)-pu+q" inchere that: "],[(d^(...

[f(u)=u^(2)-pu+q" inchere that: "],[(d^(2))/(beta^(2))+(B^(2))/(d^(2))=(rho^(2))/(q^(2))-(4p^(2))/(q)=]

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-px+q, prove that (a^(2))/(beta^(2))+(beta^(2))/(a^(2))=(p^(4))/(q^(2))-(4p^(2))/(q)+2

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-px+q ,prove that (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2))=(p^(4))/(q^(2))-4(p^(2))/(q)+2

If alpha and beta are zeros of the quadratic polynomial f(x) = x^(2) - px + q , prove that (alpha^(2))/(beta^(2)) +(beta^(2))/(alpha^(2)) = (p^(4))/(q^(2)) - (4p^(2))/(q) + 2 .

If alphaa n dbeta are the zeros of the quadratic polynomial f(x)=x^2-p x+q , prove that (alpha^2)/(beta^2)+(beta^2)/(alpha^2)=(p^4)/(q^2)-(4p^2)/q+2

Given that tan alpha and tan beta,x^(2)-px+q=0 then value of sin^(2)(alpha+beta)=(p^(2))/(p^(2)+(1-q)^(2)) (b) (p^(2))/(p^(2)+q^(2))(q^(2))/(p^(2)+(1-q)^(2)) (d) (p^(2))/((p+q)^(2))

If (p)/(q)=(r)/(s)=(t)/(u) then (p^(2)+r^(2)+t^(2))/(q^(2)+s^(2)+u^(2))=

The order and degree of ((d^(4)y)/(dx^(4)) + (d^(2)y)/(dx^(2)))^((5)/(2)) = a(d^(2)y)/(dx^(2)) are p,q then p+q =

Given that tanalpha and tanbeta,x^2-p x+q=0 , then value of sin^2(alpha+beta)= (p^2)/(p^2+(1-q)^2) (b) (p^2)/(p^2+q^2) (q^2)/(p^2+(1-q)^2) (d) (p^2)/((p+q)^2)

If the difference of the roots of x^(2)-px+q=0 is unity,then p^(2)+4q=1b .p^(2)-4q=1c*p^(2)+4q^(2)=(1+2q)^(2)d4p^(2)+q^(2)=(1+2p)^(2)