Home
Class 12
MATHS
underset x rarr1Lt((2x-3)(sqrt(x-1)))/(2...

underset x rarr1Lt((2x-3)(sqrt(x-1)))/(2x^(2)+x-3)=

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(x to 1)"Lt" ((2x-3)(sqrtx-1))/(2x^(2)+x-3)=

lim_(x rarr1)((3x-4)(sqrt(x)-1))/(2x^(2)+x-3)

lim_ (x rarr1) ((2x-3) (sqrt (x) -1)) / (2x ^ (2) + x-3)

lim_ (x rarr1) ((2x-3) (sqrt (x) -1)) / (2x ^ (2) + x-3) =

Evaluate the limit: lim_(x rarr1)((2x-3)(sqrt(x)-1))/(2x^(2))

lim_ (x rarr1) ((2x-1) (sqrt (x) -1)) / (2x ^ (2) + x-3)

3) lim_(x rarr1)((2x)sqrt(x+1))/(2x^(2)+x+1)

Evaluate {:(" Lt"),(xrarr1):}((2x-1)(sqrt(x)-1))/((2x^(2)+x-3))

Evaluate the following limits. underset (x rarr 0)Lt (1-cos x)/(2x^2)

lim_(x rarr 1) ((sqrt(x) - 1) (2x - 3))/(2x^(2) + x - 3) is :