Home
Class 14
MATHS
a^(2)+b^(2)+c^(2)=2...

a^(2)+b^(2)+c^(2)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: If a,b,c in R then a^(2)b^(2)+b^(2)c^(2)+c^(2)a^(2)>=abc(a+b+c) Statement-2: since A.M.>=G*M rArr a^(2)b^(2)+b^(2)c^(2)>=2ab^(2)c

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

Show that (a^(2)+b^(2),c^(2)),(b^(2)+c^(2),a^(2)) ,and (c^(2)+a^(2),b^(2)) are collinear

If a,b,c,d,e are in continued proportion,then prove that (ab+bc+cd+de)^(2)=(a^(2)+b^(2)+c^(2)+d^(2))(b^(2)+c^(2)+d^(2)+e^(2))

If 3x^(2)-2ax+(a^(2)+2b^(2)+2c^(2))=2(ab+bc) , then a , b , c can be in

If 3x^(2)-2ax+(a^(2)+2b^(2)+2c^(2))=2(ab+bc) , then a , b , c can be in

If 3x^(2)-2ax+(a^(2)+2b^(2)+2c^(2))=2(ab+bc) , then a , b , c can be in

If a, b, c and d are in G.P., show that, a^(2) + b^(2), b^(2) + c^(2), c^(2) + d^(2) are in G.P.