Home
Class 12
MATHS
If f:[0,pi]->R is continuous and int0^pi...

If `f:[0,pi]->R` is continuous and `int_0^pi f(x) sin x dx = int_0^pi f(x) cos x dx = 0` then the number of roots of `f(x)` in `(0, pi)` is ...

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

If int_0^pi x f (sin x)dx = A int_0^(pi//2) f (sin x) dx , then A is :

If int_0^(pi) x f (sin x) dx = A int_0^(pi//2) f (sin x) dx , then A is :

int_0^pi x f(sin x)dx is equal to

If int_(0)^(pi) x f(sinx) dx=A int_(0)^((pi)/(2))f(sinx)dx , then the value of A is -

If int_0^(a) f(x) dx = int_0^(a) f(a-x) dx , then the value of int_0^(pi) x. f(sin x) dx =

If P = int_0^(3pi) f(cos^(2)x) dx and Q = int_0^(pi) f(cos^(2)x) dx then