Home
Class 12
MATHS
f(x)=tan^(-1)(sqrt((1+sin x)/(1-sin x)))...

f(x)=tan^(-1)(sqrt((1+sin x)/(1-sin x)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify tan^(-1)(sqrt((1-sin x)/(1+sin x))), 0lt x ltpi

If y=tan^(-1)sqrt((1-sin x)/(1+sin x)), then the value of (dy)/(dx) at x=(pi)/(6) is.

If y=(tan^(-1)(sqrt(1+sin x)+sqrt(1-sin x)))/(sqrt(1+sin x)-sqrt(1-sin x)) find the value of (dy)/(dx)

int_(0)^(pi//2)tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]\ dx

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)

If y= tan ^(-1) sqrt (( 1 - sin x)/( 1 + sin x)) , then the vluae of (dy)/(dx) at x = pi /2 is

If x in(pi,(3 pi)/(2)) then the value of tan^(-1)((sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x)))

Differentiate 'tan^(^^)(-1){(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))},darr backslash0

Prove that sec x+tan x=sqrt((1+sin x)/(1-sin x))