Home
Class 12
MATHS
" If "y^(2)=a^(2)cos^(2)x+b^(2)sin^(2)x,...

" If "y^(2)=a^(2)cos^(2)x+b^(2)sin^(2)x," show that "y+(d^(2)y)/(dx^(2))=(a^(2)b^(2))/(y^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(2)=a^(2)cos^(2)x+b^(2)sin^(2)x then prove that (d^(2)y)/(dx^(2))+y=(a^(2)b^(2))/(y^(3))

If y=sin^(-1)x, show that (d^(2)y)/(dx^(2))=(1)/((1-x^(2))^(3/2))

If x^(2)/a^(2)+y^(2)/b^(2)=1" then show that "(d^(2)y)/(dx^(2))=-b^(4)/(a^(2)y^(3)) .

If y=2sin x+3cos x, show that (d^(2)y)/(dx^(2))+y=0

If y=2sin x+3cos x, show that (d^(2)y)/(dx^(2))+y=0

If y=sin^(-1)x , show that (d^2y)/(dx^2)=x/((1-x^2)^(3//2))

If : y=cos^(2)((3x)/(2))-sin^(2)((3x)/(2))," then: "(d^(2)y)/(dx^(2))=

If : y=cos^(2)((3x)/(2))-sin^(2)((3x)/(2))," then: "(d^(2)y)/(dx^(2))=

If y^2=a^2cos^2x+b^2sin^2x then prove that (d^2y)/(dx^2)+y=(a^2b^2)/(y^3)