Home
Class 12
MATHS
If domain of y = f(x) is [-4, 3], then...

If domain of `y = f(x)` is `[-4, 3],` then domain of `g(x) = f(|[x]|)` is, where [.] denotes greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

If the domain of y=f(x) is [-3,2] , then find the domain of g(x)=f([x]), where [] denotes the greatest integer function.

If the domain of y=f(x) is [-3,2] ,then find the domain of g(x)=f(||x]|), wher [] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re \ [.] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re[] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re \ [.] denotes the greatest integer function.

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

If domain of y=f(x is x in[-3,2], then domain of y=f([x] : (where [] denotes greatest integer function) (A) [-3,2], (B) [-2,3] (C) [-3,3], (D) [-2,3]