Home
Class 12
MATHS
What is the area of the triangle OAB whe...

What is the area of the triangle OAB where O is the origin, `vec(OA)=3hat(i)-hat(j)+hat(k) and vec(OB)=2hat(i)+hat(j)-3hat(k)` ?

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the area of Delta OAB , where O is the origin, OA= 3 hat(i) - hat(j) + hat(k) and OB= 2 hat(i) + hat(j)- 3hat(k) ?

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The area of a triangle formed by vertices O,A and B where vec(OA) = hat(i) + 2 hat(j) + 3 hat(k) and vec(OB) = - 3hat(i) - 2 hat(j) + hat(k) is

Find the area of the triangle formed by O,A,B where : vec OA= 3 hat i+ 2 hat j+ hat k , vec OB = -hat i- 3 hat j+ hat k

Find the area of triangle (i) drawn on the vectors vec(a) = 6 hat (i) + 2 hat (j) - 3 hat (k) and vec (b) = 4 hat (i) - hat (j) - 2 hat (k)

Find the area of the triangle formed by O,A,B where : vec OA= hat i+ 2 hat j+ 3 hat k , vec OB = -3 hat i- 2 hat j+ hat k

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .