Home
Class 12
MATHS
Show that the four points P ,\ Q ,\ R ,\...

Show that the four points `P ,\ Q ,\ R ,\ S` with position vectors ` vec p ,\ vec q ,\ vec r ,\ vec s` respectively such that `5 vec p-2 vec q+6 vec r-9 vec s= vec0,` are coplanar. Also find the position vector of the point of intersection of the line segments PR and QS.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the found points A,B,C,D with position vectors vec a,vec b,vec c,vec d respectively such that 3vec a-2vec b+5vec c-6vec d=vec 0 ,are coplanar .Also,find the position vector of the point of intersection of the line segments AC and BD.

Two vectors vec P and vec Q

For three vectors vec p,vec q and vec r if vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec p = vec a + vec b, vec q = vec a-vec b | vec a | = | vec b | = 1 then | vec p xxvec q | =

If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is

Find the position vector of a point R which divides the line segment joining P and Q whose position vectors are 2vec a+vec b and vec a-4vec b ,externally in the ratio 1:2, also show that P is the midpoint of the line segment RQ.

Find the condition that the lines vec r=vec a+t(vec b xxvec c),vec r=vec b+p(vec c xxvec a) may intersect.Accepting that condition,find the point of intersection.