Home
Class 12
MATHS
(x^(2))/(1+x^(2))...

(x^(2))/(1+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

int((1-x^(-2))/(x^(1/2)-x^(-1/2))-(2)/(x^(3/2))+(x^(-2)-x)/(x^(1/2)-x^(-1/2)))dx

If y=(x^(2)+x+1)/(x^(2)-x+1)," then "(x^(2)-x+1)^(2)y_(1)=

(x^(2))/((x+1)^(2))+((x+1)^(2))/(x^(2))-(x)/(x+1)+(x+1)/(x)-(7)/(4)=p^(2)

int((1-x^(- 2))/(x^(1//2)-x^(-1//2))-2/(x^(3//2))+(x^(- 2)-x)/(x^(1//2)-x^(-1//2)))dx

|[(x-2)^(2), (x-1)^(2), x^(2)], [(x-1)^(2), x^(2), (x+1)^(2)],[x^(2), (x+1)^(2), (x+2)^(2)]|+P^(3)=0 the value of P is

If sec theta+tan theta=x, then tan theta=(x^(2)+1)/(x) (b) (x^(2)-1)/(x)( c) (x^(2)+1)/(2x) (d) (x^(2)-1)/(2x)

A(x)=|(1,2,3),(x+1,2x+1,3x+1),(x^(2)+1,2x^(2)+1,3x^(2)+1)|impliesint_(0)^(1)A(x)dx=

A(x)=|{:(1,2,3),(x+1,2x+1,3x+1),(x^(2)+1,2x^(2)+1,3x^(2)+1):}|rArrint_(0)^(1)A(x)dx=

A(x)=|(1,2,3),(x+1,2x+1,3x+1),(x^(2)+1,2x^(2)+1,3x^(2)+1)|impliesint_(0)^(1)A(x)dx=

(x-2)^(2),(x-1)^(2),x^(2)(x-1)^(2),x^(2),(x+1)^(2)x^(2),(x+1)^(2),(x+2)^(2)]|=-8