Home
Class 12
MATHS
If points A(60 hat i+3 hat j),\ B(40 hat...

If points `A(60 hat i+3 hat j),\ B(40 hat i-8 hat j)` and `C(a hat i-52 hat j)` are collinear, then a is equal to

A

a) `40`

B

b) `-40`

C

c) `20`

D

d) `-20`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a \) such that the points \( A(60 \hat{i} + 3 \hat{j}) \), \( B(40 \hat{i} - 8 \hat{j}) \), and \( C(a \hat{i} - 52 \hat{j}) \) are collinear, we can follow these steps: ### Step 1: Define the position vectors The position vectors of points \( A \), \( B \), and \( C \) are: - \( \vec{A} = 60 \hat{i} + 3 \hat{j} \) - \( \vec{B} = 40 \hat{i} - 8 \hat{j} \) - \( \vec{C} = a \hat{i} - 52 \hat{j} \) ### Step 2: Find the vector \( \vec{AB} \) The vector \( \vec{AB} \) is given by: \[ \vec{AB} = \vec{B} - \vec{A} = (40 \hat{i} - 8 \hat{j}) - (60 \hat{i} + 3 \hat{j}) = (40 - 60) \hat{i} + (-8 - 3) \hat{j} = -20 \hat{i} - 11 \hat{j} \] ### Step 3: Find the vector \( \vec{BC} \) The vector \( \vec{BC} \) is given by: \[ \vec{BC} = \vec{C} - \vec{B} = (a \hat{i} - 52 \hat{j}) - (40 \hat{i} - 8 \hat{j}) = (a - 40) \hat{i} + (-52 + 8) \hat{j} = (a - 40) \hat{i} - 44 \hat{j} \] ### Step 4: Set up the collinearity condition Since points \( A \), \( B \), and \( C \) are collinear, the vectors \( \vec{AB} \) and \( \vec{BC} \) must be parallel. This means: \[ \vec{AB} = \lambda \vec{BC} \] for some scalar \( \lambda \). ### Step 5: Write the equation Substituting the vectors we found: \[ -20 \hat{i} - 11 \hat{j} = \lambda ((a - 40) \hat{i} - 44 \hat{j}) \] ### Step 6: Equate the coefficients From the above equation, we can equate the coefficients of \( \hat{i} \) and \( \hat{j} \): 1. For \( \hat{i} \): \[ -20 = \lambda (a - 40) \] 2. For \( \hat{j} \): \[ -11 = \lambda (-44) \] ### Step 7: Solve for \( \lambda \) From the second equation: \[ \lambda = \frac{-11}{-44} = \frac{1}{4} \] ### Step 8: Substitute \( \lambda \) back to find \( a \) Substituting \( \lambda \) into the first equation: \[ -20 = \frac{1}{4} (a - 40) \] Multiplying both sides by 4: \[ -80 = a - 40 \] Thus, solving for \( a \): \[ a = -80 + 40 = -40 \] ### Final Answer The value of \( a \) is \( -40 \).

To find the value of \( a \) such that the points \( A(60 \hat{i} + 3 \hat{j}) \), \( B(40 \hat{i} - 8 \hat{j}) \), and \( C(a \hat{i} - 52 \hat{j}) \) are collinear, we can follow these steps: ### Step 1: Define the position vectors The position vectors of points \( A \), \( B \), and \( C \) are: - \( \vec{A} = 60 \hat{i} + 3 \hat{j} \) - \( \vec{B} = 40 \hat{i} - 8 \hat{j} \) - \( \vec{C} = a \hat{i} - 52 \hat{j} \) ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
  • APPLICATION OF INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|118 Videos

Similar Questions

Explore conceptually related problems

If the points with position vectors 60hat i+2hat j,40hat i-8hat j and adot i-52hat j are collinear,find the value of a .

The points with respective position vectors 60hat i+3hat j,40hat i-8hat j,xhat i52hat j are collinear if x is equal to

Show that the points A(-2 hat i+3 hat j+5 hat k), B( hat i+2 hat j+3 hat k) and C(7 hat i-3 hat k) are collinear.

Show that the points A(-2hat i+3hat j+5hat k),B(hat i+2hat j+3hat k) and C(7hat i-hat k) are collinear.

If points hat i+hat j,hat i-hat j and phat i+qhat j+rhat k are collinear,then a.p=1 b.r=0 c.q epsilon Rd.q!=1

If the four points with positing vectors,-2hat i+hat j+hat k,hat i+hat j+hat k,hat j-hat k and lambdahat j+hat k are coplanar,then lambda is equal to

The angle between (hat i +hat j ) and (hat i - hat j) is _____.

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

RD SHARMA-ALGEBRA OF VECTORS-Solved Examples And Exercises
  1. Write a unit vector in the direction of vec (PQ) where PQ are the poi...

    Text Solution

    |

  2. Find a vector in the direction of vector 2 hat i-3 hat j+6 hat k which...

    Text Solution

    |

  3. It | vec a|=4 and -3 le lambda le 2, then write the range of lambda |v...

    Text Solution

    |

  4. In a triangle DeltaOAC, if B is the mid point of side AC and vec (O A...

    Text Solution

    |

  5. If in a DeltaA B C ,\ A=(0,0),\ B=(3,3sqrt(3)), C-=(-3sqrt(3),3) then ...

    Text Solution

    |

  6. If vec a ,\ vec b are the vectors forming consecutive sides of a reg...

    Text Solution

    |

  7. Forces 3O vec A ,\ 5O vec B act along O A\ a n d\ O B If their resulta...

    Text Solution

    |

  8. If vec a ,\ vec b ,\ vec c are three non-zero vectors, no two which...

    Text Solution

    |

  9. If points A(60 hat i+3 hat j),\ B(40 hat i-8 hat j) and C(a hat i-52 h...

    Text Solution

    |

  10. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  11. The vector cosalpha\ cosbeta hat i+cosalpha\ sinbeta hat j+sinalpha ha...

    Text Solution

    |

  12. In a regular hexagon A B C D E F ,\ vec (AB)=a ,\ vec(B C)= vec b , ...

    Text Solution

    |

  13. The vector equation of the plane passing through vec a ,\ vec b , ve...

    Text Solution

    |

  14. If O\ a n d\ O^(prime) are circumcentre and orthocentre of \ A B C ,\ ...

    Text Solution

    |

  15. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  16. Let G be the centroid of \ A B Cdot If vec A B= vec a ,\ vec A C= ve...

    Text Solution

    |

  17. If A B C D E F is a regular hexagon, them vec (A D)+ vec (E B)+ vec (...

    Text Solution

    |

  18. The position vectors of the points A ,\ B ,\ C are 2 hat i+ hat j- hat...

    Text Solution

    |

  19. If three points A ,\ B and C have position vectors hat i+x hat j+3 ha...

    Text Solution

    |

  20. A B C D is a parallelogram with A C and B D as diagonals. Then, vec (...

    Text Solution

    |