Home
Class 11
MATHS
cos^(2)(theta+phi)-sin^(2)(theta-phi)=co...

cos^(2)(theta+phi)-sin^(2)(theta-phi)=cos2 theta cos2 phi

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos2 theta*cos2 phi+cos^(2)(theta+phi)-cos^(2)(theta-phi)=cos(2 theta+2 phi)

cos2 theta cos2 phi+sin^(2)(theta-phi)-sin^(2)(theta+phi)=cos(2 theta+2 phi)

Prove that, cos^(2) (theta + phi) - sin^(2) (theta - phi) = cos 2 theta cos 2 phi

Prove that sin^2(theta-phi)-sin^2(theta+phi)= -sin2theta sin2phi hence prove that cos2thetacos2phi-sin^2(theta+phi)+sin^2(theta-phi)=cos(2theta+2phi)

Prove that cos 2 theta cos 2 phi + sin ^(2) ( theta - phi) -sin ^(2) (theta + phi) = cos ( 2 theta + 2 phi).

The value of the determinant ,cos(theta+phi),-sin(theta+phi),cos2 phisin theta,cos theta,sin phi-cos theta,sin theta,cos phi]| is

cos2thetacos2phi+sin^(2)(theta-phi)-sin^(2)(theta+phi) is equal to

prove that (cos3 theta+cos3 phi)/(2cos(theta+phi)-1)=(cos theta+cos phi)cos(theta+phi)-(sin theta+sin phi)sin(theta+phi)

"cos"2theta."cos"2phi+"sin"^(2)(theta-phi)-"sin"^(2)(theta+phi) is equal to (i) "sin"2(theta+phi) (ii) "cos"2(theta+phi) (iii) "sin"2(theta-phi) (iv) "cos"2(theta-phi)