Home
Class 12
MATHS
Iff(y)=e^y ,g(y)>0,a n dF(t)=int0^t t...

`Iff(y)=e^y ,g(y)>0,a n dF(t)=int_0^t t(t-y)dt ,t h e n` `F(t)=e^t-(1+t)` `F(t)=t e^t` `F(t)=t e^(-1)` (d) `F(t)=1-e^t(1+t)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(y)=e^y ,g(y) = y>0,a n d \ F(t)=int_0^t f(t-y)g(y)dy ,then

If f(y)=e^y ,g(y) = y>0,a n d \ F(t)=int_0^t f(t-y)g(y)dy ,then

Iff(y)=e^y ,g(y)=y;y>0,a n dF(t)=int_0^t f(t-y)g(y) dy,t h e n a) F(t)=e^t-(1+t) b) F(t)=t e^t c) F(t)=t e^(-t) (d) F(t)=1-e^t(1+t)

If f(y)=e^y,g(y)=y,y>0, and F(t)=int_0^t f(t-y)g(y) dy , then

If f(y)=e^y,g(y)=y,y>0, and F(t)=int_0^t f(t-y)g(y) dy , then

If f(y)=e^(y),g(y)=y:ygt0andF(t)=int_(0)^(t)f(t-y)g(y)dy, then

Iff(y)=e^(y),g(y)>0, and F(t)=int_(0)^(t)t(t-y)dt, then F(t)=e^(t)-(1+t)F(t)=te^(t)F(t)=te^(-1)(d)F(t)=1-e^(t)(1+t)

If f(y)=e^(y),g(y)=y,y>0, and F(t)=int_(0)^(t)f(t-y)g(y)dy ,then

If f(y)=e^(y), g(y)=y, y gt 0 and F(t)=int_(0)^(t) f(t-y)g(y)dy , then -