Home
Class 10
MATHS
Complete the following activity by filli...

Complete the following activity by filling the boxes.
`sin^(2) theta+cos^(2) =square`….(Identity)
Dividing each term by `sin^(2) theta`, we get
`(sin^(2)theta)/(sin^(2) theta)+(cos^(2)theta)/(sin^(2)theta)=(square)/(sin^(2)theta)`
`:.1+square=square`

Promotional Banner

Similar Questions

Explore conceptually related problems

Complete the following activity by filling the boxes sin^(2) theta+cos^(2) theta=square ……….(Identity) Dividing each term by cos^(2)theta (sin^(2)theta)/(cos^(2)theta)+(cos^(2)theta)/(cos^(2)theta)=(square)/(cos^(2)theta) :.square+1=square

(1)/(sin^(2)theta)-(cos^(2)theta)/(sin^(2) theta) =___.

Prove: sin^(8)theta-cos^(8)theta=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)thetacos^(2)theta)

Prove the following 1.((1-cos^(2)theta)/(sin^(2)theta))=12.1-((cos^(2)theta)/(1+sin theta))=sin theta

sin^(3)theta + sin theta - sin theta cos^(2)theta =

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

(sin^(2) theta)/(1-cos theta)-(cos^(2) theta)/(1-sin theta)=cos theta-sin theta

prove that- sin^2theta/cos^2theta+cos^2theta/sin^2theta=1/ (sin^2thetacos^2theta)-2