Home
Class 12
MATHS
If with reference to a right handed syst...

If with reference to a right handed system of mutually perpendicular unit vectors ` hat i , hat j and hat k`, we have ` vecalpha=3 hat i- hat j` ,and `vecbeta=2 hat i+ hat j-3 hat kdot` then express ` vecbeta` in the form `vecbeta= vecbeta_1+ vecbeta_2`, where `vecbeta_1` is parallel to ` vecalpha and vecbeta_2` is perpendicular to ` vecalpha`

A

`vecbeta_1=3/2hati-1/2hat j` ,and `vecbeta_2=1/2 hat i+ 3/2hat j-3 hat kdot`

B

`vecbeta_1=3/2hati+1/2hat j` ,and `vecbeta_2=1/3 hat i+ 3/2hat j-3 hat kdot`

C

`vecbeta_1=1/2hati-1/2hat j` ,and `vecbeta_2=1/2 hat i+ 3/2hat j-3 hat kdot`

D

`vecbeta_1=1/2hatj-1/2hat k` ,and `vecbeta_2=1/2 hat i+ 3/2hat j+3 hat kdot`

Text Solution

AI Generated Solution

The correct Answer is:
To express the vector \(\vec{\beta}\) in the form \(\vec{\beta} = \vec{\beta_1} + \vec{\beta_2}\), where \(\vec{\beta_1}\) is parallel to \(\vec{\alpha}\) and \(\vec{\beta_2}\) is perpendicular to \(\vec{\alpha}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{\alpha} = 3\hat{i} - \hat{j} \] \[ \vec{\beta} = 2\hat{i} + \hat{j} - 3\hat{k} \] ### Step 2: Express \(\vec{\beta_1}\) in terms of \(\vec{\alpha}\) Since \(\vec{\beta_1}\) is parallel to \(\vec{\alpha}\), we can write: \[ \vec{\beta_1} = \lambda \vec{\alpha} \] for some scalar \(\lambda\). ### Step 3: Express \(\vec{\beta_2}\) Using the relation \(\vec{\beta} = \vec{\beta_1} + \vec{\beta_2}\), we can express \(\vec{\beta_2}\) as: \[ \vec{\beta_2} = \vec{\beta} - \vec{\beta_1} = \vec{\beta} - \lambda \vec{\alpha} \] ### Step 4: Ensure \(\vec{\beta_2}\) is perpendicular to \(\vec{\alpha}\) For \(\vec{\beta_2}\) to be perpendicular to \(\vec{\alpha}\), we need: \[ \vec{\alpha} \cdot \vec{\beta_2} = 0 \] Substituting \(\vec{\beta_2}\): \[ \vec{\alpha} \cdot (\vec{\beta} - \lambda \vec{\alpha}) = 0 \] This simplifies to: \[ \vec{\alpha} \cdot \vec{\beta} - \lambda \vec{\alpha} \cdot \vec{\alpha} = 0 \] ### Step 5: Calculate \(\vec{\alpha} \cdot \vec{\beta}\) and \(\vec{\alpha} \cdot \vec{\alpha}\) Calculating \(\vec{\alpha} \cdot \vec{\beta}\): \[ \vec{\alpha} \cdot \vec{\beta} = (3\hat{i} - \hat{j}) \cdot (2\hat{i} + \hat{j} - 3\hat{k}) = 3 \cdot 2 + (-1) \cdot 1 + 0 = 6 - 1 = 5 \] Calculating \(\vec{\alpha} \cdot \vec{\alpha}\): \[ \vec{\alpha} \cdot \vec{\alpha} = (3\hat{i} - \hat{j}) \cdot (3\hat{i} - \hat{j}) = 3^2 + (-1)^2 = 9 + 1 = 10 \] ### Step 6: Solve for \(\lambda\) Substituting back into the equation: \[ 5 - \lambda \cdot 10 = 0 \] This gives: \[ \lambda = \frac{5}{10} = \frac{1}{2} \] ### Step 7: Find \(\vec{\beta_1}\) Now substituting \(\lambda\) back into the equation for \(\vec{\beta_1}\): \[ \vec{\beta_1} = \frac{1}{2} \vec{\alpha} = \frac{1}{2}(3\hat{i} - \hat{j}) = \frac{3}{2}\hat{i} - \frac{1}{2}\hat{j} \] ### Step 8: Find \(\vec{\beta_2}\) Now substituting \(\lambda\) into the equation for \(\vec{\beta_2}\): \[ \vec{\beta_2} = \vec{\beta} - \vec{\beta_1} = (2\hat{i} + \hat{j} - 3\hat{k}) - \left(\frac{3}{2}\hat{i} - \frac{1}{2}\hat{j}\right) \] Calculating this gives: \[ \vec{\beta_2} = \left(2 - \frac{3}{2}\right)\hat{i} + \left(1 + \frac{1}{2}\right)\hat{j} - 3\hat{k} = \frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k} \] ### Final Result Thus, we can express \(\vec{\beta}\) as: \[ \vec{\beta} = \left(\frac{3}{2}\hat{i} - \frac{1}{2}\hat{j}\right) + \left(\frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k}\right) \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|197 Videos
  • SCALAR TRIPLE PRODUCT

    RD SHARMA|Exercise Solved Examples And Exercises|59 Videos

Similar Questions

Explore conceptually related problems

For mutually perpendicular unit vectors hat(i), hat(j), hat(k) , we have :

If with reference to the right handed system of mutually perpendicular unit vectors hat i , hat j and hat k , ->alpha=3 hat i- hat j , ->beta=2 hat i+ hat j-3 hat k , then express ->beta in the from ->beta= ->beta_1+ ->beta_2 , where -

Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk . If vecbeta = vecbeta_(1) - vecbeta_(2) , where vecbeta_(1) is parallel to vecalpha and vecbeta_(2) is perpendicular to vecalpha , then vecbeta_(1) xx vecbeta_(2) is equal to:

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

If veca=3hati+4hatj+5hatk and vecbeta =2hati+hatj-4hatk , then express vecbeta=vecbeta_1+vecbeta_2 such that vecbeta_1||vecalpha and vecbeta_2botvecalpha .

Write a unit vector perpendicular to hat i+ hat j\ a n d\ hat j+ hat kdot

Find a unit vector perpendicular to each of the vector -> a+ -> b and -> a- -> b where -> a=3 hat i+2 hat j+2 hat k and -> b= hat i+2 hat j-2 hat k

Find a unit vector perpendicular to the vectors hat(j) + 2 hat(k) & hat(i) + hat(j)

Find a vector of mangitude 18 which is perpendicular to both the vector 4 hat i - hat j + 3 hat k and -2 hat i + hat j -2 hat k .

Find a unit vector perpendicular to both the vectors hat i-2hat j+3hat k and hat i+2hat j-hat k

RD SHARMA-SCALAR OR DOT PRODUCT-Solved Examples And Exercises
  1. Show that the vector 2 hat i- hat j+ hat k ,\ hat i-3 hat j-5 hat k ,...

    Text Solution

    |

  2. Show that the points A, B, C with position vectors 2 hat i- hat j+ ...

    Text Solution

    |

  3. If with reference to a right handed system of mutually perpendicular u...

    Text Solution

    |

  4. Find the value of x for which the ngle between the vectors vec a=2x^2...

    Text Solution

    |

  5. If l ,\ m ,\ n are scalars and vec a ,\ vec b ,\ vec c are vectors,...

    Text Solution

    |

  6. If vec a ,\ vec b ,\ vec c are three mutually perpendicular vectors...

    Text Solution

    |

  7. Let vec a ,\ vec b ,\ vec c be three vectors of magnitudes 3, 4 and...

    Text Solution

    |

  8. If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b...

    Text Solution

    |

  9. Three vectors vec a ,\ vec b ,\ vec c satisfy the condition vec a+...

    Text Solution

    |

  10. Find vec adot vec b when: vec a= hat i-2 hat j+ hat k\ a n d\ vec b...

    Text Solution

    |

  11. Find vec adot vec b when: vec a= hat j+2 hat k\ a n d\ vec b=2 hat ...

    Text Solution

    |

  12. Find vec adot vec b when: vec a= hat j- hat k\ a n d\ vec b=2 hat i...

    Text Solution

    |

  13. For what value of lambda are the vector vec a\ a n d\ vec b perpendi...

    Text Solution

    |

  14. For what value of lambda are the vector vec a\ a n d\ vec b perpendi...

    Text Solution

    |

  15. For what value of lambda are the vector vec a\ a n d\ vec b perpendi...

    Text Solution

    |

  16. For what value of lambda are the vector vec a\ a n d\ vec b perpendi...

    Text Solution

    |

  17. If vec a\ a n d\ vec b are two vectors such that | vec a|=4,\ | vec ...

    Text Solution

    |

  18. If vec a= hat i- hat j\ a n d\ vec b=- hat j+2 hat k ,\ fin d\ ( vec...

    Text Solution

    |

  19. Find the angle between the vectors vec a\ a n d\ vec b where: vec a...

    Text Solution

    |

  20. Find the angle between the vectors vec a\ a n d\ vec b where: vec a...

    Text Solution

    |