Home
Class 12
MATHS
Three vectors vec a ,\ vec b ,\ vec c...

Three vectors ` vec a ,\ vec b ,\ vec c` satisfy the condition ` vec a+ vec b+ vec c= vec0`. Evaluate the quantity `mu= vec (a)cdot vec (b)+ vec (b )cdot vec (c)+ vec (c)cdot vec (a) ,\ if\ | vec a|=1,\ | vec b|=4\ a n d\ | vec c|=2.`

A

`-27/2`

B

`-21/2`

C

`-29/2`

D

`-19/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the quantity \( \mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) given the condition \( \vec{a} + \vec{b} + \vec{c} = \vec{0} \) and the magnitudes \( |\vec{a}| = 1 \), \( |\vec{b}| = 4 \), and \( |\vec{c}| = 2 \). ### Step-by-step Solution: 1. **Write the given condition**: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \] 2. **Dot the equation with \( \vec{a} \)**: \[ \vec{a} \cdot (\vec{a} + \vec{b} + \vec{c}) = \vec{a} \cdot \vec{0} \] This simplifies to: \[ \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \] Since \( |\vec{a}| = 1 \), we have: \[ 1 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \] Thus, we can express: \[ \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = -1 \quad \text{(Equation 1)} \] 3. **Dot the equation with \( \vec{b} \)**: \[ \vec{b} \cdot (\vec{a} + \vec{b} + \vec{c}) = \vec{b} \cdot \vec{0} \] This simplifies to: \[ \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{b} \cdot \vec{c} = 0 \] Since \( |\vec{b}| = 4 \), we have: \[ \vec{b} \cdot \vec{a} + 16 + \vec{b} \cdot \vec{c} = 0 \] Thus, we can express: \[ \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} = -16 \quad \text{(Equation 2)} \] 4. **Dot the equation with \( \vec{c} \)**: \[ \vec{c} \cdot (\vec{a} + \vec{b} + \vec{c}) = \vec{c} \cdot \vec{0} \] This simplifies to: \[ \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + \vec{c} \cdot \vec{c} = 0 \] Since \( |\vec{c}| = 2 \), we have: \[ \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + 4 = 0 \] Thus, we can express: \[ \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = -4 \quad \text{(Equation 3)} \] 5. **Add the three equations**: Adding Equation 1, Equation 2, and Equation 3: \[ (\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}) + (\vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c}) + (\vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b}) = -1 - 16 - 4 \] This simplifies to: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -21 \] 6. **Solve for \( \mu \)**: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \frac{-21}{2} \] Therefore, the value of \( \mu \) is: \[ \mu = -\frac{21}{2} \] ### Final Answer: \[ \mu = -\frac{21}{2} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|197 Videos
  • SCALAR TRIPLE PRODUCT

    RD SHARMA|Exercise Solved Examples And Exercises|59 Videos

Similar Questions

Explore conceptually related problems

Three vectors vec a, vec b and vec c satisfy the condition vec a + vec b + vec b + vec c = vec 0 .Evaluate the quantity mu = vec a * vec b + vec b * vec c + vec c * vec a , if | vec a | = 1 | vec b | = 4 and | vec c | = 2

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If? B, c are three vectors such that | vec a | = 5, | vec b | = 12 and | vec c | = 13 and vec a + vec b + vec c = 0 then vec a * vec b + vec b * vec c + vec c * vec a

If vec a, vec b, vec c are unit vectors such that vec a + vec b + vec c = vec 0 find the value of vec a * vec b + vec b * vec c + vec c * vec avec a * vec b + vec b * vec c + vec c * vec a

Suppose the three vectors vec a,vec b,vec c on a plane satisfy the condition that |vec a|=|vec b|=|vec c|=|vec a+vec b|=1;vec c is perpendicular to vec a and vec b*vec c<0, then

Show that vectors vec a,vec b,vec c are coplanar if vec a+vec b,vec b+vec c,vec c+vec a are coplanar.

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is vec bdot vec c= vec adot vec d b. vec adot vec b= vec cdot vec d c. vec bdot vec c+ vec adot vec d=0 d. vec adot vec b+ vec cdot vec d=0

If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=3, |vec(b)| =4 and |vec(c )|=5 , then show that vec(a).vec(b)+vec(b).vec(c )+vec(c ). vec(a)=-25 .

RD SHARMA-SCALAR OR DOT PRODUCT-Solved Examples And Exercises
  1. Let vec a ,\ vec b ,\ vec c be three vectors of magnitudes 3, 4 and...

    Text Solution

    |

  2. If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b...

    Text Solution

    |

  3. Three vectors vec a ,\ vec b ,\ vec c satisfy the condition vec a+...

    Text Solution

    |

  4. Find vec adot vec b when: vec a= hat i-2 hat j+ hat k\ a n d\ vec b...

    Text Solution

    |

  5. Find vec adot vec b when: vec a= hat j+2 hat k\ a n d\ vec b=2 hat ...

    Text Solution

    |

  6. Find vec adot vec b when: vec a= hat j- hat k\ a n d\ vec b=2 hat i...

    Text Solution

    |

  7. For what value of lambda are the vector vec a\ a n d\ vec b perpendi...

    Text Solution

    |

  8. For what value of lambda are the vector vec a\ a n d\ vec b perpendi...

    Text Solution

    |

  9. For what value of lambda are the vector vec a\ a n d\ vec b perpendi...

    Text Solution

    |

  10. For what value of lambda are the vector vec a\ a n d\ vec b perpendi...

    Text Solution

    |

  11. If vec a\ a n d\ vec b are two vectors such that | vec a|=4,\ | vec ...

    Text Solution

    |

  12. If vec a= hat i- hat j\ a n d\ vec b=- hat j+2 hat k ,\ fin d\ ( vec...

    Text Solution

    |

  13. Find the angle between the vectors vec a\ a n d\ vec b where: vec a...

    Text Solution

    |

  14. Find the angle between the vectors vec a\ a n d\ vec b where: vec a...

    Text Solution

    |

  15. Find the angle between the vectors vec a\ a n d\ vec b where: vec a...

    Text Solution

    |

  16. Find the angle between the vectors vec a\ a n d\ vec b where: vec a...

    Text Solution

    |

  17. Find the angle between the vectors vec a\ a n d\ vec b where: vec a...

    Text Solution

    |

  18. Find the angle between the vectors vec a\ a n d\ vec b where: vec a...

    Text Solution

    |

  19. Find the angles which the vector vec a= hat i- hat j+sqrt(2) hat k ma...

    Text Solution

    |

  20. Dot product of a vector with hat i+ hat j-3 hat k ,\ hat i+3 hat j-2...

    Text Solution

    |