Home
Class 12
MATHS
If | vec a+ vec b|=60 ,\ | vec a- vec b|...

If `| vec a+ vec b|=60 ,\ | vec a- vec b|=40\ | vec b|=46\ fin d\ | vec a|`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vec aa n d vec b , prove that | vec a+ vec b|lt=| vec a|+| vec b| (ii) | vec a- vec b|lt=| vec a|+| vec b| (iii) | vec a- vec b|geq| vec a|-| vec b|

(vec a-vec b) * (vec a + vec b) = 27 and | vec a | = 2 | vec b | find | vec a | and | vec b |

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

If | vec a|=sqrt(26), | vec b|=7 a n d | vec axx vec b|=35 , fin d vec adot vec bdot

If vec a , vec b are two vectors, then write the truth value of the following statements: vec a=- vec b| vec a|=| vec b| | vec a|=| vec b| vec a=+- vec b | vec a|=| vec b| vec a= vec b

find | vec a |, | vec b | if (vec a + vec b) * (vec a-vec b) = 8 and | vec a | = 8 | vec b |

If | vec a|=2,| vec b|=5a n d vec adot vec b=0, then vec ax( vec ax( vec ax( vec ax( vec a x( vec ax vec b))))) is equal to 64 vec a (b) 64 vec b (c) -64 vec b (d) -64 vec a

if | vec a | = | vec b | = | vec a + vec b | = 1 then | vec a-vec b |

Three vectors vec a , vec b , vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a , if | vec a|=1, | vec b|=4 a n d | vec c|=2.

Three vectors vec a, vec b and vec c satisfy the condition vec a + vec b + vec b + vec c = vec 0 .Evaluate the quantity mu = vec a * vec b + vec b * vec c + vec c * vec a , if | vec a | = 1 | vec b | = 4 and | vec c | = 2