Home
Class 12
MATHS
Find the magnitude of two vectors vec a...

Find the magnitude of two vectors ` vec a` and `vec b` having the same magnitude and such that the angle between them is `60^0` and their scalar product is .

A

`|vec a| =1, |vec b|=2`

B

`|vec a| = |vec b|=1`

C

`|vec a| =3, |vec b|=2`

D

`|vec a| = |vec b|=2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of two vectors \(\vec{a}\) and \(\vec{b}\) that have the same magnitude and an angle of \(60^\circ\) between them, with a scalar product of \(\frac{1}{2}\), we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Given Information:** - Let the magnitude of both vectors \(\vec{a}\) and \(\vec{b}\) be \(M\). - The angle between the vectors is \(60^\circ\). - The scalar product (dot product) of the vectors is given as \(\vec{a} \cdot \vec{b} = \frac{1}{2}\). 2. **Use the Formula for Scalar Product:** The scalar product of two vectors can be expressed as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) \] Since both vectors have the same magnitude \(M\), we can rewrite this as: \[ \vec{a} \cdot \vec{b} = M \cdot M \cdot \cos(60^\circ) \] 3. **Substitute the Known Values:** We know that \(\cos(60^\circ) = \frac{1}{2}\). Therefore, we can substitute this value into the equation: \[ \vec{a} \cdot \vec{b} = M^2 \cdot \frac{1}{2} \] 4. **Set the Equation Equal to the Given Scalar Product:** We know from the problem that \(\vec{a} \cdot \vec{b} = \frac{1}{2}\). Thus, we can set up the equation: \[ M^2 \cdot \frac{1}{2} = \frac{1}{2} \] 5. **Solve for \(M^2\):** To eliminate \(\frac{1}{2}\) from both sides, we multiply both sides by \(2\): \[ M^2 = 1 \] 6. **Find the Magnitude \(M\):** Taking the square root of both sides gives us: \[ M = \pm 1 \] Since magnitudes are always positive, we take: \[ M = 1 \] 7. **Conclusion:** Therefore, the magnitude of both vectors \(\vec{a}\) and \(\vec{b}\) is \(1\). ### Final Answer: The magnitude of both vectors \(\vec{a}\) and \(\vec{b}\) is \(1\). ---
Promotional Banner

Topper's Solved these Questions

  • RELATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|197 Videos
  • SCALAR TRIPLE PRODUCT

    RD SHARMA|Exercise Solved Examples And Exercises|59 Videos

Similar Questions

Explore conceptually related problems

Find the magnitude of each of the two vectors vec a and vec b having the same magnitude such that the angle between them is 60^(@) and their scalar product is 9/2 .

Find the magnitude of two vectors -> a and -> b having the same magnitude and such that the angle between them is 60o and their scalar product is 1/2 .

Let vec a and vec b be two vectors of the same magnitude such that the angle between then is 60^(0) and vec avec b=8. Find |vec a| and |vec b|

If the magnitude of two vectors are 3 and 6 and ther scalar product is 9 , find the angle between the two vectors.

If the magnitudes of two vectors are 3 and 4 and their scalar product is 6, then find the angle between the two vectors.

If the magnitude of two vectors are 4 and 6 and the magnitude of their scalar product is 12sqrt2 what is the angle between the vectors?

If the magnitudes of two vectors are 3 and 4 and magnitude of their scalar product is 6 what is the angle between the vectors ?

Find the angle between two vectors vec a and vec b with magnitudes 1 and 2 respectively and when vec a.vec b=1

Find the angle between two vectors vec a and vec b having the same length sqrt(2) and their scalar product is -1.

If the magnitudes of two vectors are 2 and 3 and magnitude of their scalar product is 2sqrt3 what is the angle between the vectors ?

RD SHARMA-SCALAR OR DOT PRODUCT-Solved Examples And Exercises
  1. If vec a=2 hat i+2 hat j+3 hat k ,\ vec b=- hat i+2 hat j+ hat k\ a ...

    Text Solution

    |

  2. Find the angles of a triangle whose vertices are A(0,\ -1,\ -2),\ B(3,...

    Text Solution

    |

  3. Find the magnitude of two vectors vec a and vec b having the same ma...

    Text Solution

    |

  4. Show that the points whose position vectors are vec a=4 hat i-3 hat j...

    Text Solution

    |

  5. If A ,\ B ,\ C have position vectors (0, 1, 1), (3, 1, 5), (0, 3, 3...

    Text Solution

    |

  6. Find the projection of vec b+ vec c\ on\ vec a\ ,\ w h e r e\ vec a...

    Text Solution

    |

  7. If vec a=5 hat i- hat j-3 hat k\ a n d\ vec b= hat i+3 hat j-5 hat k...

    Text Solution

    |

  8. A unit vector vec a makes angles pi/4\ a n d\ pi/3 with hat i\ a n d...

    Text Solution

    |

  9. If two vectors vec a\ a n d\ vec b are such that | vec a|=2,\ | vec ...

    Text Solution

    |

  10. If vec a\ is a unit vector, then find | vec x| in each of the follow...

    Text Solution

    |

  11. If vec a\ is a unit vector, then find | vec x| in each of the follow...

    Text Solution

    |

  12. Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot( vec a- vec b)=...

    Text Solution

    |

  13. Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot( vec a- vec b)=...

    Text Solution

    |

  14. Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot( vec a- vec b)=...

    Text Solution

    |

  15. Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=5\ a n d\ vec adot ve...

    Text Solution

    |

  16. Find | vec a- vec b|,\ if:| vec a|=3,\ | vec b|=4\ a n d\ vec adot ve...

    Text Solution

    |

  17. Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot ve...

    Text Solution

    |

  18. Find the angle between two vectors vec a\ a n d\ vec b ,\ if:| vec a...

    Text Solution

    |

  19. Express the vector vec a=5 hat i-2 hat j+5 hat k as the sum of two ve...

    Text Solution

    |

  20. If vec a\ a n d\ vec b are two vectors of the same magnitude incline...

    Text Solution

    |