Home
Class 12
MATHS
If | vec a|=2,\ | vec b|=3\ a n d\ vec ...

If `| vec a|=2,\ | vec b|=3\ a n d\ vec adot vec b=3` find the projection of ` vec b\ on\ vec adot`

Text Solution

AI Generated Solution

To find the projection of vector \(\vec{b}\) onto vector \(\vec{a}\), we can use the formula for the projection of one vector onto another: \[ \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a} \] ### Step 1: Identify the given values We are given: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|197 Videos
  • SCALAR TRIPLE PRODUCT

    RD SHARMA|Exercise Solved Examples And Exercises|59 Videos

Similar Questions

Explore conceptually related problems

If | vec a|=10 ,\ | vec b|=2\ a n d\ | vec axx vec b|=16 find vec adot vec bdot

If | vec a|=sqrt(26), | vec b|=7 a n d | vec axx vec b|=35 , fin d vec adot vec bdot

If vec a a n d vec b are two vectors such that vec adot vec b=6, | vec a|=3 a n d | vec b|=4. Write the projection of vec a on vec bdot

If | vec a|=2,| vec b|=5a n d vec adot vec b=0, then vec ax( vec ax( vec ax( vec ax( vec a x( vec ax vec b))))) is equal to 64 vec a (b) 64 vec b (c) -64 vec b (d) -64 vec a

Vectors vec a\ a n d\ vec b are such that | vec a|=3,\ | vec b|=2/3a n d\ ( vec axx vec b) is a unit vector. Write the angle between vec a\ a n d\ vec bdot

If | vec a | = 2, | vec b | = 7 and vec a xxvec b = 3vec i + 2vec j + 6vec k then find vec a.vec b.vec b.vec b

I|vec a|=sqrt(3)|vec b|=2 and vec a*vec b=sqrt(3), find the angle between vec a and vec b

If vec a and vec b are two vectors such that |vec a|=4,|vec b|=3 and vec a*vec b=6. Find the angle between vec a and vec b

If vec a and vec b are two vectors such that |vec a|=4,|vec b|=3 and vec avec b=6. Find the angle between vec a and vec b

If vec aa n d vec b are two vectors and angle between them is theta, then | vec axx vec b|^2+( vec adot vec b)^2=| vec a|^2| vec b|^2 | vec axx vec b|=( vec adot vec b),iftheta=pi//4 vec axx vec b=( vec adot vec b) hat n ,(w h e r e hat n is unit vector,) if theta=pi//4 ( vec axx vec b)dot( vec a+ vec b)=0