Home
Class 12
MATHS
For any two vectors vec a\ a n d\ vec ...

For any two vectors ` vec a\ a n d\ vec b ,` find `veca.( vecbxx veca)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

For any two vectors vec a\ a n d\ vec b prove that | vec axx vec b|^2=| (veca. veca , veca. vecb),(vecb.veca ,vecb.vecb)|

For any two vectors vec aa n d vec b , prove that | vec a+ vec b|lt=| vec a|+| vec b| (ii) | vec a- vec b|lt=| vec a|+| vec b| (iii) | vec a- vec b|geq| vec a|-| vec b|

(22) if vec p and vec q are unit vectors forming an angle of 30^@ ; find the area of the parallelogram having veca=vecp+2vecq and vecb=2vecp+vecq as its diagonals. (23) For any two vectors vec a and vec b , prove that | vec a xxvec b|^2=| [vec a* vec a ,vec a*vec b],[ vec b* vec a, vec b* vec b]| .

For any two vectors vec a and vec b, we always have |vec a+ vec b|<=|vec a|+|vec b|

For any two vectors vec a and vec b prove that | vec a + vec b | <= | vec a | + | vec b |

For any two vectors vec a and vec b write then |vec a+vec b|=|vec a|+|vec b| holds.

For any two vectors vec a and vec b write when |vec a+vec b|=|vec a-vec b| holds.

For any two vectors veca and vecb prove that |veca+vec|le|veca|+|vecb|

For any two vectors veca and vecb prove that |veca-vec|le|veca|+|vecb|