Home
Class 12
MATHS
If | vec axx vec b|^2=( vec adot vec b)^...

If `| vec axx vec b|^2=( vec adot vec b)^2=144\ a n d\ | vec a|=4`, find `vec bdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec aa n d vec b are two vectors and angle between them is theta, then | vec axx vec b|^2+( vec adot vec b)^2=| vec a|^2| vec b|^2 | vec axx vec b|=( vec adot vec b),iftheta=pi//4 vec axx vec b=( vec adot vec b) hat n ,(w h e r e hat n is unit vector,) if theta=pi//4 ( vec axx vec b)dot( vec a+ vec b)=0

(vec a xxvec b)^(2)+(vec a*vec b)^(2)=144 and |vec a|=4 then find the value of |vec b|

If | vec axx vec b|=4,\ | vec adot vec b|=2,\ t h e n\ | vec a|^2| vec b|^2= 6 b. 2 c. 20 d. 8

If | vec a|=10 ,\ | vec b|=2\ a n d\ | vec axx vec b|=16 find vec adot vec bdot

if (vec axvec b) ^ (2) + (vec a * vec b) ^ (2) = 144, | vec a | = 4 then | vec b | =

If vec rdot vec a=0, vec rdot vec b=1a n d[ vec r vec a vec b]=1, vec adot vec b!=0,( vec adot vec b)^2-=| vec a|^2| vec b|^2=1, then find vec r in terms of vec aa n d vec bdot

If | vec a|=sqrt(26), | vec b|=7 a n d | vec axx vec b|=35 , fin d vec adot vec bdot

prove that | vec axx vec b|=( vec adot vec b)t a ntheta, w h e r e theta is the angle between vec a a n d vec bdot

Show that ( vec axx vec b)^2=| vec a|^2| vec b|^2-( vec adot vec b)^2=| [vec a.vec a, vec a.vec b],[ vec a.vec b, vec b.vec b]|

If a ,\ b represent the diagonals of a rhombus, then vec axx vec b= vec0 b. vec adot vec b=0 c. vec adot vec b=1 d. vec axx vec b= vec a