Home
Class 12
MATHS
f(x)=sqrt(sin(cosx))+ln(-2cos^2x+3cosx+1...

`f(x)=sqrt(sin(cosx))+ln(-2cos^2x+3cosx+1)+e^(cos^- 1)((2sinx+1)/(2sqrt(2sinx)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)((3cosx-2sinx)/(sqrt(13)))

Simplify: cos^-1((sinx+cosx)/(sqrt(2)))

sinx + cosx = (cos2x)/(1-sin2x)

If I=int(sinx+sin^3x)/(cos2x)dx=Pcosx+Qlog|f(x)|+R , then (a) P=1/2,Q=-3/(4sqrt(2)) (b) P=1/4, Q=1/(sqrt(2)) (c) f(x)=(sqrt(2)cosx+1)/(sqrt(2)cosx-1) (d) f(x)=(sqrt(2)cosx-1)/(sqrt(2)cosx+1)

If I=int(sinx+sin^3x)/(cos2x)dx=Pcosx+Qlog|f(x)|+R , then (a) P=1/2,Q=-3/(4sqrt(2)) (b) P=1/4, Q=1/(sqrt(2)) (c) f(x)=(sqrt(2)cosx+1)/(sqrt(2)cosx-1) (d) f(x)=(sqrt(2)cosx-1)/(sqrt(2)cosx+1)

int (sinx+cosx)/(sqrt(1+sin 2x))dx=

sinx + cosx = sqrt(2) cos2x

The domain of the function: f(x) = sqrt(sin^(-1)(log_(2)x)) + sin^(-1)((1+x^(2))/(2x)) + sqrt(cos(sinx)) is: