Home
Class 12
MATHS
" If "f(1)=1,f(1)=2," then "lim(x rarr1)...

" If "f(1)=1,f(1)=2," then "lim_(x rarr1)(sqrt(f(x))-1)/(sqrt(x)-1)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1) = 1, f'(1) = 2 then lim_(x to 1 ) (sqrt(f(x))-1)/(sqrt(x)-1) is equal to -

If f(1)=1,f'(1)=2 , then lim_(xto1)(sqrt(f(x))-1)/(sqrt(x)-1) is a)2 b)4 c)1 d) 1/2

lim_(x rarr 1)(1-sqrt(x))/(1 + sqrt(x))

If f(1) =1 and f^(')(1) =2 then lim_(x rarr 1) (sqrt(f(x))-1)/(sqrt(x) -1) =

lim_(x rarr1)(x-1)/(sqrt(x)-1)=

lim_(x rarr1)(sqrt(1+x)+sqrt(1-x))/(1+x)

lim_(x rarr1)(sqrt(1+x)+sqrt(1-x))/(1+x)

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

If f(9)=9 and f'(9)=1 then lim_(x rarr 9) (3-sqrt(f(x)))/(3-sqrtx)