Home
Class 12
MATHS
A biased coin with probability p, 0ltplt...

A biased coin with probability p, `0ltplt1` of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals

Text Solution

Verified by Experts

Chance of doing 2 toss `=(1-p)^{*} p`
Chance of doing 4 toss `=(1-p)^{*}(1-p)^{*}(1-p)^{*} p`
Chance of doing 6 toss `=(1-p)^{*}(1-p)^{*}(1-p)^{*}(1-p)^{*}(1-p)^{*} p`
Probability that number of coins is even `=` chance of `2+` chance of `4+` chance of `6+ldots ldots`
`=(1-p) * p(1+(1-p) *(1-p)+(1-p) *(1-p) *(1-p) *(1-p)+ldots .)`
`Rightarrow(1-p) * p(frac{1}{1-(1-p)^{2}})=2 / 5`
`Rightarrow(1-p) * p(frac{1}{p(2-p)})=2 / 5`
`Rightarrow(1-p) *(frac{1}{(2-p)})=2 / 5`
...
Promotional Banner

Topper's Solved these Questions

  • BINARY OPERATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|224 Videos
  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos

Similar Questions

Explore conceptually related problems

A biased coin with probability p,0

A biased coin with probability P,(0

A biased coin with probability p(0 lt plt 1) of falling tails is tossed until a tail appears for the first time. If the probability that tail comes in odd number of trials is (2)/(3) , then p equals

A fair coin is tossed until one of the two sides occurs twice in a row. The probability that the number of tosses required is even is

A coin is tossed until a head qappears or the tail appears 4 rxx in succession.Find the probability distribution of the number of tosses.

A biased coin is tossed repeatedly until a tail appears for the first time. The head is 3 times likely to appear as the tail. The probability that the number of tosses required will be more than 4, given that in first two toss no tail has occur, is

Two coins are tossed five times. The probability that an odd number of heads are obtained, is

RD SHARMA-BINOMIAL DISTRIBUTION -Solved Examples And Exercises
  1. One hundred identical coins, each with probability p , of showing up h...

    Text Solution

    |

  2. A fair coin is tossed 99 times. If X is the number of times heads occu...

    Text Solution

    |

  3. How many times must a man toss a fair coin so that the probability of ...

    Text Solution

    |

  4. If the mean and variance of a binomial variable X are 2 and 1 respecti...

    Text Solution

    |

  5. A biased coin with probability p, 0ltplt1 of heads is tossed until a h...

    Text Solution

    |

  6. If X follows binomial distribution with mean 4 and variance 2, find P...

    Text Solution

    |

  7. If X follows a binomial distribution with parameters n=100 and p = 1/...

    Text Solution

    |

  8. A fair die is tossed eight times. The probability that a third six is ...

    Text Solution

    |

  9. Fifteen coupens are numbered 1,2,3,...15 respectively. Seven coupons a...

    Text Solution

    |

  10. A five-digit number is written down at random. The probability that th...

    Text Solution

    |

  11. If a fair coin is tossed 10 times, find the probability of (i)     ...

    Text Solution

    |

  12. The mean and variance of a binomial distribution are 4 and 3 respectiv...

    Text Solution

    |

  13. A coin is tossed 4 times. The probability that at least one head turns...

    Text Solution

    |

  14. A coin is tossed n times. The probability of getting head at least onc...

    Text Solution

    |

  15. The probability of selecting a male or a female is same. If the probab...

    Text Solution

    |

  16. A box contains 100 pens of which 10 are defective. What is the probabi...

    Text Solution

    |

  17. Suppose a random variable X follows the binomial distribution with par...

    Text Solution

    |

  18. If the probability that a person is not a swimmer is 0.3, then find th...

    Text Solution

    |

  19. Which one is not a requirement of a binomial distribution? a. There ar...

    Text Solution

    |

  20. What is the probability of guessing correctly at least 8 out of 10 ...

    Text Solution

    |