Home
Class 12
MATHS
Let X be a random variable which assumes...

Let X be a random variable which assumes values `x_1, x_2, x_3,\ x_4` such that `2P(X=x_1)=3P(X=x_2)=P(X=x_3)=5P(X=x_4)dot` Find the probability distribution of X.

Promotional Banner

Similar Questions

Explore conceptually related problems

For the p.m.f. P (X = x) of discrete random variable X which takes values 1, 2, 3, 4 such that 2P(X=1)=3P(X=2)=P(X=3)=4P(X=4) , then E (X)=

If X is discrete random variable takes the values x_1, x_2, x_3 , ... x_n then sum_(i=1) P(x_i) = ........

A random variable X takes the value 1,2,3 and 4 such that 2P(X=1)=3P(X=2)=P(X=3)=5P(X=4) . If sigma^(2) is the variance and mu is the mean of X then sigma^(2)+mu^(2)=

If X be a random variable taking values x_(1),x_(2),x_(3),….,x_(n) with probabilities P_(1),P_(2),P_(3) ,….. P_(n) , respectively. Then, Var (x) is equal to …….. .

The random variable X can the values 0,1,2,3, Give P(X=0)=P(X=1)=p and P(X=2)=P(X=3) such that sum p_(i)x_(i)^(2)=2sum p_(i)x_(i) then find the value of p

The random variable X can take only the values 0;1;2. Giventhat P(X=0)=P(X=1)=p and that E(X^(2))=E(X); find the value of p.

If X is a poisson variable such that 2P(X=0)+P(X=2)=2P(X=1) then E(X)=

A random variable X takes the values 0,1 and 2 .If P(X=1)=P(X=2) and P(X=0)=0.4 ,then the mean value of the random variable X is

A random variable X takes values 0, 1, 2, 3,… with probability proportional to (x+1)((1)/(5))^x . P(Xge2) equals