Home
Class 12
MATHS
If for a function f(x), f'(2)=0, f"(2)=0...

If for a function `f(x), f'(2)=0, f"(2)=0, f"'(2)>0,` then `x=2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a polynomial function: f(x)=x^(5)+ . . . . if f(1)=0 and f(2)=0, then f(x) is divisible by

If f is a function such that f(0) = 2, f(1) = 3, f(x+2) = 2f(x) - f(x + 1), then f(5) is

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AA x,y in R and f(0)!=0 ,then f(x) is an even function f(x) is an odd function If f(2)=a, then f(-2)=a If f(4)=b, then f(-4)=-b

Iff is a function such that f(0)=2,f(1)=3,f(x+2)=2f(x)-f(x+1), then f(5) is

The function f(x)= xcos(1/x^2) for x != 0, f(0) =1 then at x = 0, f(x) is

If 2f(x)=f'(x) and f(0)=3 then f(2)=

Let f(x) be a quadratic function such that f(0)=f(1)=0&f(2)=1, then lim_(x rarr0)(cos((pi)/(2)cos^(2)x))/(f^(2)(x)) equal to

If f''(x) = sec^(2) x and f (0) = f '(0) = 0 then:

If f''(x) = sec^(2) x and f (0) = f '(0) = 0 then:

Let the function f satisfies f(2x)*f'(-2x)=f(-2x)f'(2x) and f(0)=4 ,then int_(-24)^(24)(dx)/(4+f(2x))dx is