Home
Class 8
MATHS
[" Q.9.If "e^(x)+e^(y)=e^(x+y)," then sh...

[" Q.9.If "e^(x)+e^(y)=e^(x+y)," then show that "],[(dy)/(dx)=-e^(y-e)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^y = e ^(x + y ) , then show that (dy)/(dx) =

If y=e^(x-y) then show that (dy)/(dx) = y/(1+y)

if e^x+e^y=e^(x+y) then show that (dy)/(dx)+e^(y-x)=0 .

If e^x + e^y = e^(x+y) , then show that dy/dx = - e^(y-x)

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0