Home
Class 12
MATHS
Prove that : int(0)^(pi//2) (sqrt(tanx))...

Prove that : `int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sqrt(cotx))/(sqrt(tanx)+sqrt(cotx))dx=

By using the properties of definte, prove that int_(0)^(pi//2)(sqrt(cotx))/(sqrt(tanx)+sqrt(cotx))=(pi)/4

int(sqrt(tanx) + sqrt(cotx))dx =

int_(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))\ dx

Prove that I =int_(0)^(pi//2)(sqrt(secx))/(sqrt("cosec"x)+sqrt(secx))dx =pi/4

Evaluate the following : int_(0)^(pi//2)(sqrt(tanx))/(sqrt(tanx)+sqrt(cotx))dx

Prove that : int_(0)^(pi/4)(sqrt(tanx)+sqrt(cotx))dx=sqrt(2).pi/2 .

Prove that: int_0^(pi/4)(sqrt(tanx)+sqrt(cotx))\ dx=sqrt(2)pi/2

Prove that, int_(0)^((pi)/(2))(sqrt(tanx)+sqrt(cotx))dx=sqrt(2)pi