Home
Class 11
MATHS
" If "(log x)/(b-c)=(log y)/(c-a)=(log z...

" If "(log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b)," then "x^(a)*y^(b)*z^(c)=

Promotional Banner

Similar Questions

Explore conceptually related problems

underset equal to b-c=(log y)/(c-a)=(log z)/(a-b) then x^(a)y^(b)z^(c) is

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

(log x)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b')

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then which of the following is/are true?

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) then value of abc=