Home
Class 12
MATHS
In a triangle ABC,prove bsinB-csinC=asi...

In a triangle `ABC`,prove `bsinB-csinC=asin(B-C)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC , prove that: bsinB-c sinC=asin(B-C)

In DeltaABC , prove that: bsinB-c sinC=asin(B-C)

In any triangle ABC, prove that asin(B-C)+bsin(C-A)+csin(A-B)=0 .

In a triangle ABC, Prove that asin(B-C)+bsin(C-A)+csin(A-B)=0

In triangle ABC , prove that sinA=sin(B+C)

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle A B C , prove that: \ asin(B-C)+b sin(C-A)+csin(A-B)=0

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C) =4sin Asin Bsin Cdot