Home
Class 11
MATHS
If f(x)=xsinx^2;g(x)=xcosx^2 for x in ...

If `f(x)=xsinx^2;g(x)=xcosx^2` for `x in [-1,2]` `A=int_1^2 f(x)dx ; B int_-1^2 g(x)`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x sin x^(2);g(x)=x cos x^(2) for x in[-1,2]A=int_(1)^(2)f(x)dx;B int_(-1)^(2)g(x)

Statement-1: int_(0)^(1)(cos x)/(1+x^(2))dxgt(pi)/(4)cos1 Statement-2: If f(x) and g(x) are continuous on [a,b], then int_(a)^(b) f(x) g(x)dx=f(c )int_(a)^(b)g(x) for some c in (a,b) .

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

(A) For each of the following function f(x), verify that: int_0^2 f(x) dx=int_0^1 f(x) dx+int_1^2 f(x) dx: (i) f(x)=x+2 (ii) f(x)= x^2+2 (iii) f(x)= e^x (B) For each of the following pairs of function f(x) and g(x) , verify that: int_0^1 [f(x)+g(x)]dx=int_0^1 f(x) dx+int_0^1 g(x) dx: (i) f(x)=1,g(x) = x^2 (ii) f(x)=e^x, g(x)=1

int(cosx+xsinx)/(x^(2)+xcosx)dx= . . . .

int(cosx+xsinx)/(x^(2)+xcosx)dx= . . . .