Home
Class 11
MATHS
Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x...

Let `I_n=int_(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx`, where {*} denotet the fractional part of x. Find `I_1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_n=int_(-n)^n({x+1}*{x^2+2}+{x^2+3}{x^2+4})dx , where { } denote the fractional part of x. Find I_1.

Let I_1=int_0^n[x]dx" and I_2=int_0^n{x}dx , where [x] and {x} are integral and fractional parts of x and nne N-{1} . Then (I_1)/(I_2) is equal to

Let l_(1)=int_(1)^(10^(4))({sqrt(x)})/(sqrt(x))dx and l_(2)=int_(0)^(10)x{x^(2)}dx where {x} denotes fractional part of x then

Let l_(1)=int_(1)^(10^(4))({sqrt(x)})/(sqrt(x))dx and l_(2)=int_(0)^(10)x{x^(2)}dx where {x} denotes fractional part of x then

Let f(x)=int_(3)^(25n+(1)/(4))e^({2x+3})dx, where {x} is fractional part of x, then f(x) is equal to

LetI_(1)=int_(0)^(n)[x]dx and I_(2)=int_(0)^(n){x}dx where [x] and {x} are integral and fractionalparts of x and n in N-{1}. Then (I_(1))/(I_(2)) is equal to

Evaluate : (i) int_(-1)^(2){2x}dx (where function {*} denotes fractional part function) (ii) int_(0)^(10x)(|sinx|+|cosx|) dx (iii) (int_(0)^(n)[x]dx)/(int_(0)^(n)[x]dx) where [x] and {x} are integral and fractional parts of the x and n in N (iv) int_(0)^(210)(|sinx|-[|(sinx)/(2)|])dx (where [] denotes the greatest integer function and n in 1 )