Home
Class 12
MATHS
If a^(x) = b^(y) = c^(z) = d^(w)," show...

If ` a^(x) = b^(y) = c^(z) = d^(w)," show that " log_(a) (bcd) = x (1/y+1/z+1/w)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z)=d^(w) then log_(a)(bcd)=

If a^x=b^y=c^z=d^w then log_a(bcd)=

If x = log_(a)^(bc) , y = log_(b)^(ca) and z = log_(c)^(ab) then show that frac(1)(x+1)+frac(1)(y+1)+frac(1)(z+1) = 1 , [abc ne 1]

If a,b,c,d be in G.P. and a^x=b^y=c^z=d^w , prove that 1/x,1/y,1/z,1/w are in A.P.

If a,b,c,d be in G.P. and a^x=b^y=c^z=d^w , prove that 1/x,1/y,1/z,1/w are in A.P.

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that x^(a)y^(b)z^(c ) = 1

If w(x,y,z) = x^(2)(y-z) + y^(2)(z-x) + z^(2)(x-y) , then (del w)/(del x) + (del w)/(del y) + (del w)/(del z) is

If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y) show that (b/c )^(x)(c /a)^(y)(a/b)^z=1

If y = a^(1/(1-log_(a)x)) and z = a^(1/(1-log_(a)y)) , then show that x = a^(1/(1-log_(a)z))