Home
Class 12
MATHS
If x, y, z are non-zero real numbers, th...

If x, y, z are non-zero real numbers, then the inverse of matrix `A=[(x,0, 0) ,(0,y,0),( 0, 0,z)]`is
(A) `[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]]`
(B) `xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]]`
(C) `(1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]]]`
(D) `(1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]`

Text Solution

Verified by Experts

Given `A=[(x,0, 0) ,(0,y,0),( 0, 0,z)]`

We have to find `A^(-1)`
We know that
`A^(-1)=1/|A|adj(A), " " " " ` exists if `|A|ne0`

Calculating `|A|`

`|A|=|(x,0, 0) ,(0,y,0),( 0, 0,z)|`

` " " " " =x|[y,0],[0,z]|-0|[0,0],[0,z]|+0|[0,y],[0,0]|`

` " " " " =x(yz-0)-0+0=xyz`

Since `|A|ne0`
Thus, `A^(-1)` exist

Now,
`adj A=[[A_11,A_21,A_31],[A_12,A_22,A_32],[A_13,A_23,A_33]]`

`A=[(x,0, 0) ,(0,y,0),( 0, 0,z)]`

`M_11=|[y,0],[0,z]|=yz-0=yz, " " " ` `M_12=|[0,0],[0,z]|= 0 , " " " ` `M_13=|[0,y],[0,0]|= 0 `

`M_21=|[0,0],[0,z]|=0, " " " ` `M_22=|[x,0],[0,z]|=xz, " " " ` `M_23=|[x,0],[0,0]|= 0 `

`M_31=|[0,0],[0,z]|=0, " " " ` `M_32=|[x,0],[0,0]|=0, " " " ` `M_33=|[x,0],[0,y]|= xy `


`A_11=(-1)^(1+1)M_11=(-1)^2yz=yz, " " " ` `A_12=(-1)^(1+2)M_12=(-1)^3 .0=0, " " " ` `A_13=(-1)^(1+3)M_13=(-1)^4 .0=0`

`A_21=(-1)^(2+1)M_21=(-1)^3 .0=0, " " " ` `A_22=(-1)^(2+2)M_22=(-1)^4 .xz=xz, " " " ` `A_23=(-1)^(2+3)M_23=(-1)^5 .0=0`

`A_31=(-1)^(3+1)M_31=(-1)^4 .0=0, " " " ` `A_32=(-1)^(3+2)M_32=(-1)^5 .0=0, " " " ` `A_33=(-1)^(3+3)M_33=(-1)^6 .xy=xy`

Thus, `adj A=[[xy,0,0],[0,zy,0],[0,0,xy]]`

Now, `A^(-1)=1/|A|adj(A)`

` " " " " = 1/(xyz)[[xy,0,0],[0,zy,0],[0,0,xy]]`

` " " " " =[[(xy)/(xyz),0,0],[0,(zy)/(xyz),0],[0,0,(xy)/(xyz)]]`

` " " " " = [[(1)/(x),0,0],[0,(1)/(y),0],[0,0,(1)/(z)]]`

`A^(-1)=[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]]`

Thus, the correct option is (A).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT|Exercise SOLVED EXAMPLES|34 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer in questions 17 to 19: If x, y, z are nonzero real numbers then the inverse of metrix A=[{:(x,0,0),(0,y,0),(0,0,z):}] is : (a) [{:(x^(-1),0,0),(0,y^(1),0),(0,0,z^(1)):}] (b) xyz[{:(x^(-1),0,0),(0,y^(1),0),(0,0,z^(1)):}] ( c) 1/(xyz)[{:(x,0,0),(0,y,0),(0,0,z):}] (d) 1/(xyz)[{:(1,0,0),(0,1,0),(0,0,1):}]

The inverse of the matrix [[x, 0, 0], [0, y, 0], [0, 0, z]] is

If x ,\ y ,\ z are non-zero real numbers, then the inverse of the matrix A=[x0 0 0y0 0 0z] , is [x^(-1)0 0 0y^(-1)0 0 0z^(-1)] (b) x y z[x^(-1)0 0 0y^(-1)0 0 0z^(-1)] (c) 1/(x y z)[x0 0 0y0 0 0z] (d) 1/(x y z)[1 0 0 0 1 0 0 0 1]

6.If A=[[x,0,0],[0,y,0],[0,0,z]] then A^(-1) is

The inverse of [(1,a,b),(0,x,0),(0,0,1)] is [(1,-a,-b),(0,1,0),(0,0,1)] |then x =

If A=[(alpha, 0,0),(0,b,0),(0,0,c)] and a,b,c are non zero real numbers, then A^-1 is (A) 1/(abc) [(1,0,0),(0,1,0),(0,0,1)] (B) 1/(abc) [(a,0,0),(0,b,0),(0,c,0)] (C) 1/(abc) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)] (D) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)]

If [(1, 0 ,0 ),(0,y,0),( 0, 0, 1)][(x),(-1),(z)]=[(1),( 0),( 1)] , find x ,\ y\ a n d\ z .

If P=[(x,0, 0),( 0,y,0 ),(0, 0,z)] and Q=[(a,0 ,0 ),(0,b,0 ),(0, 0,c)] , prove that P Q=[(x a,0 ,0 ),(0,y b,0),( 0 ,0,z c)]=Q P

If |[x,2,0],[2,x,0],[0,0,1]|+|[y,1],[0,0]|+|[0,1],[0,z]|=0 ,then find x

If [(1 ,0, 0) ,(0 ,1, 0),( 0 ,0 ,1)][(x),( y),( z)]=[(1),(-1),( 0)] , find x ,\ y\ a n d\ z .

NCERT-DETERMINANTS-MISCELLANEOUS EXERCISE
  1. Let A=[[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], where ...

    Text Solution

    |

  2. If x, y, z are non-zero real numbers, then the inverse of matrix A=[(...

    Text Solution

    |

  3. If a, b, c, are in A.P, then the determinant |(x+2,x+3,x+2a),( x+3,x+4...

    Text Solution

    |

  4. Solve the system of equations 2/x+3/y+(10)/z=4 4/x-6/y+5/z=1 6/x+9/y-(...

    Text Solution

    |

  5. Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(a...

    Text Solution

    |

  6. Using properties of determinants. Prove that|[1 ,1+p,1+p+q],[2, 3+2p,4...

    Text Solution

    |

  7. Using properties of determinants. Prove that|[3a,-a+b,-a+c],[-b+a,3b,-...

    Text Solution

    |

  8. Using properties of determinants. Prove that|(x, x^2, 1+p x^3),( y, y^...

    Text Solution

    |

  9. Using properties of determinants. Prove that|(alpha,alpha^2,beta+gamma...

    Text Solution

    |

  10. Evaluate |[1,x, y],[1,x+y, y],[1,x,x+y]|

    Text Solution

    |

  11. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  12. Evaluate |(x, y, x+y),( y, x+y, x),( x+y, x, y)|.

    Text Solution

    |

  13. Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(...

    Text Solution

    |

  14. Evaluate |(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbet...

    Text Solution

    |

  15. If a, b and c are real numbers, and Delta=|[b+c,c+a,a+b],[c+a,a+b,b+c]...

    Text Solution

    |

  16. Solve the equation |(x+a, x,x),(x,x+a, x),(x,x,x+a)|=0, a!= 0

    Text Solution

    |

  17. Prove that |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^...

    Text Solution

    |

  18. Prove that the determinant [(x,sintheta,costheta),(-sintheta,-x,1),(co...

    Text Solution

    |

  19. If A^(-1)=[(3,-1, 1),(-15, 6,-5),( 5,-2, 2)]and B=[(1 ,2,-2),(-1, 3, 0...

    Text Solution

    |