Home
Class 12
MATHS
Q(1)=e^(x)log y=sin^(-1)x+sin^(-1)y...

Q_(1)=e^(x)log y=sin^(-1)x+sin^(-1)y

Promotional Banner

Similar Questions

Explore conceptually related problems

e^xlogy=sin^(-1)x+sin^(-1)y

e^xlogy=sin^(-1)x+sin^(-1)y

Find dy/dx where e^x log y = sin^-1 x + sin^-1y

sqrt(1-y^(2))dx-sqrt(1-x^(2))dy=0 A) sin^(-1)x-cos^(-1)y=c B) sin^(-1)x-sin^(-1)y=c C) log(x+sqrt(1-x^(2)))=log(y+sqrt(1-y^(2)))+c D) x-y=c(1+xy)

If x -y = Sin ^(-1) x - Sin ^(-1) y then (dy)/(dx) =

Q.if sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), then

The solution of (dy)/(dx)=e^(x)(sin^(2)x+sin2x)/(y(2log y+1)) is

Q.if log y=sin^(-1)x, show that,(1-x^(2))((d^(2)y)/(dx^(2)))=x((dy)/(dx))+y