Home
Class 12
MATHS
If a, b, c, are in A.P, then the determi...

If a, b, c, are in A.P, then the determinant `|(x+2,x+3,x+2a),( x+3,x+4,x+2b ),(x+4,x+5,x+2c)|` is
(A) `0` (B) `1` (C) `x` (D) `2x`

Text Solution

AI Generated Solution

To solve the determinant problem, we need to evaluate the determinant given the condition that \( a, b, c \) are in Arithmetic Progression (A.P). ### Step-by-Step Solution: 1. **Understanding the A.P Condition**: Since \( a, b, c \) are in A.P, we can express \( b \) and \( c \) in terms of \( a \) and a common difference \( d \): \[ b = a + d \quad \text{and} \quad c = a + 2d ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Choose the correct answer in questions 17 to 19: If a, b, c are in A.P., then the determinant [{:(x+2,x+3,x+2a),(x+3,x+4,x+3b),(x+4,x+5,x+2c):}] is : (a) 0 (b) 1 ( c) x (d) 2x

If a,b,c, are in A.P, then the determinant,det[[x+2,x+3,x+2ax+3,x+4,x+2bx+4,x+5,x+2c]] is

If a, b, c are in A.P., then |{:(x+2,x+3,x+a),(x+4, x+5, x+b),(x+6, x+7,x+c):}| is

The value of the determinant |(x, x+a, x+2a),(x,x+2a, x+4a),(x, x+3a, x+6a)| is (A) 0 (B) a^3-x^3 (C) x^3-a^3 (D) (x-a)^3

If a,b,c are in A.P then the value of det[[x+1,x+2,x+ax+2,x+3,x+bx+3,x+4,x+c]] is

If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c]|=0

if a,b,c are in A.P. show that : | [ x+1, x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c ] |=0

If a-2b+c=1 , then the value of |{:(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c):}| is