Home
Class 9
MATHS
" 5."ax+cx-ay-cy...

" 5."ax+cx-ay-cy

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: |[ax-by-cz,ay+bx,az+cx],[bx+ay,by-cz-ax,bz+cy],[cx+az,ay+bz,cz-ax-by]| = (a^2+b^2+c^2)(ax+by+cz)(x^2+y^2+z^2)

det[[ Prove that ax-by-cz,ay+bx,cx+azay+bx,by-cz-ax,bz+cycx+az,bz+cy,cz-ax-by]]=(x^(2)+y^(2)+z^(2))(a^(2)+b^(2)+c^(2))(ax+by+cz)

Let a,b,c be real numbers with a^2 + b^2 + c^2 =1. Show that the equation |[ax-by-c,bx+ay,cx+a],[bx+ay,-ax+by-c,cy+b],[cx+a,cy+b,-ax-by+c]|=0 represents a straight line.

Let a,b,c be real numbers with a^2 + b^2 + c^2 =1 . Show that the equation |[ax-by-c,bx+ay,cx+a],[bx+ay,-ax+by-c,cy+b],[cx+a,cy+b,-ax-by+c]|=0 represents a straight line.

If the lines ax+by+c=0,bx+cy+a=0 and cx+ay+b=0a!=b!=c are concurrent then the point of concurrency is

Consider the linear equations ax +by+cz=0,bx+cy+az=0 and cx+ay+bz=0

The three straight lines ax+by=c, bx+cy=a and cx +ay =b are collinear, if