Home
Class 12
MATHS
If x, y, z are different and Delta=|[x,...

If x, y, z are different and `Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0` then show that `1+xyz=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y and z are different and Delta=|{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3):}|=0 then show that 1+xyz=0

If x, y, z are different and Delta=|xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0 , then

If x,y,z are different and Delta= {:|(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3)|=0 , show that xyz=-1

If x,y,z are different and Delta=det[[x,x^(2),1+x^(3)y,y^(2),1+y^(3)z,z^(2),1+z^(3)]]=0, then prove that 1+xyz=0,

If x,y,z are different and Delta=|[x,x^2,x^3-1],[y,y^2,y^3-1],[z,z^2,z^3-1]|=0 , then using properties of determinants, show that xyz=1

If x,y,z are different and Delta=|{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0 , show that : (i) 1+xyz=0 (ii) xyz=-1

If x,y,z are different and Delta=det[[x,x^(2),x^(3)-1y,y^(2),y^(3)-1z,z^(2),z^(3)-1]]=0, then using properties of determinants,show that xyz=1

If x,y,z are different and Delta = {:|( x,x^(2) , 1+x^(3)),( y,y^(3) ,1+y^(3)),( z,z^(3) ,1+z^(3)) |:} then value of delta?